direct product, abelian, monomial, 2-elementary
Aliases: C22×C94, SmallGroup(376,12)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22×C94 |
C1 — C22×C94 |
C1 — C22×C94 |
Generators and relations for C22×C94
G = < a,b,c | a2=b2=c94=1, ab=ba, ac=ca, bc=cb >
(1 256)(2 257)(3 258)(4 259)(5 260)(6 261)(7 262)(8 263)(9 264)(10 265)(11 266)(12 267)(13 268)(14 269)(15 270)(16 271)(17 272)(18 273)(19 274)(20 275)(21 276)(22 277)(23 278)(24 279)(25 280)(26 281)(27 282)(28 189)(29 190)(30 191)(31 192)(32 193)(33 194)(34 195)(35 196)(36 197)(37 198)(38 199)(39 200)(40 201)(41 202)(42 203)(43 204)(44 205)(45 206)(46 207)(47 208)(48 209)(49 210)(50 211)(51 212)(52 213)(53 214)(54 215)(55 216)(56 217)(57 218)(58 219)(59 220)(60 221)(61 222)(62 223)(63 224)(64 225)(65 226)(66 227)(67 228)(68 229)(69 230)(70 231)(71 232)(72 233)(73 234)(74 235)(75 236)(76 237)(77 238)(78 239)(79 240)(80 241)(81 242)(82 243)(83 244)(84 245)(85 246)(86 247)(87 248)(88 249)(89 250)(90 251)(91 252)(92 253)(93 254)(94 255)(95 366)(96 367)(97 368)(98 369)(99 370)(100 371)(101 372)(102 373)(103 374)(104 375)(105 376)(106 283)(107 284)(108 285)(109 286)(110 287)(111 288)(112 289)(113 290)(114 291)(115 292)(116 293)(117 294)(118 295)(119 296)(120 297)(121 298)(122 299)(123 300)(124 301)(125 302)(126 303)(127 304)(128 305)(129 306)(130 307)(131 308)(132 309)(133 310)(134 311)(135 312)(136 313)(137 314)(138 315)(139 316)(140 317)(141 318)(142 319)(143 320)(144 321)(145 322)(146 323)(147 324)(148 325)(149 326)(150 327)(151 328)(152 329)(153 330)(154 331)(155 332)(156 333)(157 334)(158 335)(159 336)(160 337)(161 338)(162 339)(163 340)(164 341)(165 342)(166 343)(167 344)(168 345)(169 346)(170 347)(171 348)(172 349)(173 350)(174 351)(175 352)(176 353)(177 354)(178 355)(179 356)(180 357)(181 358)(182 359)(183 360)(184 361)(185 362)(186 363)(187 364)(188 365)
(1 161)(2 162)(3 163)(4 164)(5 165)(6 166)(7 167)(8 168)(9 169)(10 170)(11 171)(12 172)(13 173)(14 174)(15 175)(16 176)(17 177)(18 178)(19 179)(20 180)(21 181)(22 182)(23 183)(24 184)(25 185)(26 186)(27 187)(28 188)(29 95)(30 96)(31 97)(32 98)(33 99)(34 100)(35 101)(36 102)(37 103)(38 104)(39 105)(40 106)(41 107)(42 108)(43 109)(44 110)(45 111)(46 112)(47 113)(48 114)(49 115)(50 116)(51 117)(52 118)(53 119)(54 120)(55 121)(56 122)(57 123)(58 124)(59 125)(60 126)(61 127)(62 128)(63 129)(64 130)(65 131)(66 132)(67 133)(68 134)(69 135)(70 136)(71 137)(72 138)(73 139)(74 140)(75 141)(76 142)(77 143)(78 144)(79 145)(80 146)(81 147)(82 148)(83 149)(84 150)(85 151)(86 152)(87 153)(88 154)(89 155)(90 156)(91 157)(92 158)(93 159)(94 160)(189 365)(190 366)(191 367)(192 368)(193 369)(194 370)(195 371)(196 372)(197 373)(198 374)(199 375)(200 376)(201 283)(202 284)(203 285)(204 286)(205 287)(206 288)(207 289)(208 290)(209 291)(210 292)(211 293)(212 294)(213 295)(214 296)(215 297)(216 298)(217 299)(218 300)(219 301)(220 302)(221 303)(222 304)(223 305)(224 306)(225 307)(226 308)(227 309)(228 310)(229 311)(230 312)(231 313)(232 314)(233 315)(234 316)(235 317)(236 318)(237 319)(238 320)(239 321)(240 322)(241 323)(242 324)(243 325)(244 326)(245 327)(246 328)(247 329)(248 330)(249 331)(250 332)(251 333)(252 334)(253 335)(254 336)(255 337)(256 338)(257 339)(258 340)(259 341)(260 342)(261 343)(262 344)(263 345)(264 346)(265 347)(266 348)(267 349)(268 350)(269 351)(270 352)(271 353)(272 354)(273 355)(274 356)(275 357)(276 358)(277 359)(278 360)(279 361)(280 362)(281 363)(282 364)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94)(95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188)(189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282)(283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376)
G:=sub<Sym(376)| (1,256)(2,257)(3,258)(4,259)(5,260)(6,261)(7,262)(8,263)(9,264)(10,265)(11,266)(12,267)(13,268)(14,269)(15,270)(16,271)(17,272)(18,273)(19,274)(20,275)(21,276)(22,277)(23,278)(24,279)(25,280)(26,281)(27,282)(28,189)(29,190)(30,191)(31,192)(32,193)(33,194)(34,195)(35,196)(36,197)(37,198)(38,199)(39,200)(40,201)(41,202)(42,203)(43,204)(44,205)(45,206)(46,207)(47,208)(48,209)(49,210)(50,211)(51,212)(52,213)(53,214)(54,215)(55,216)(56,217)(57,218)(58,219)(59,220)(60,221)(61,222)(62,223)(63,224)(64,225)(65,226)(66,227)(67,228)(68,229)(69,230)(70,231)(71,232)(72,233)(73,234)(74,235)(75,236)(76,237)(77,238)(78,239)(79,240)(80,241)(81,242)(82,243)(83,244)(84,245)(85,246)(86,247)(87,248)(88,249)(89,250)(90,251)(91,252)(92,253)(93,254)(94,255)(95,366)(96,367)(97,368)(98,369)(99,370)(100,371)(101,372)(102,373)(103,374)(104,375)(105,376)(106,283)(107,284)(108,285)(109,286)(110,287)(111,288)(112,289)(113,290)(114,291)(115,292)(116,293)(117,294)(118,295)(119,296)(120,297)(121,298)(122,299)(123,300)(124,301)(125,302)(126,303)(127,304)(128,305)(129,306)(130,307)(131,308)(132,309)(133,310)(134,311)(135,312)(136,313)(137,314)(138,315)(139,316)(140,317)(141,318)(142,319)(143,320)(144,321)(145,322)(146,323)(147,324)(148,325)(149,326)(150,327)(151,328)(152,329)(153,330)(154,331)(155,332)(156,333)(157,334)(158,335)(159,336)(160,337)(161,338)(162,339)(163,340)(164,341)(165,342)(166,343)(167,344)(168,345)(169,346)(170,347)(171,348)(172,349)(173,350)(174,351)(175,352)(176,353)(177,354)(178,355)(179,356)(180,357)(181,358)(182,359)(183,360)(184,361)(185,362)(186,363)(187,364)(188,365), (1,161)(2,162)(3,163)(4,164)(5,165)(6,166)(7,167)(8,168)(9,169)(10,170)(11,171)(12,172)(13,173)(14,174)(15,175)(16,176)(17,177)(18,178)(19,179)(20,180)(21,181)(22,182)(23,183)(24,184)(25,185)(26,186)(27,187)(28,188)(29,95)(30,96)(31,97)(32,98)(33,99)(34,100)(35,101)(36,102)(37,103)(38,104)(39,105)(40,106)(41,107)(42,108)(43,109)(44,110)(45,111)(46,112)(47,113)(48,114)(49,115)(50,116)(51,117)(52,118)(53,119)(54,120)(55,121)(56,122)(57,123)(58,124)(59,125)(60,126)(61,127)(62,128)(63,129)(64,130)(65,131)(66,132)(67,133)(68,134)(69,135)(70,136)(71,137)(72,138)(73,139)(74,140)(75,141)(76,142)(77,143)(78,144)(79,145)(80,146)(81,147)(82,148)(83,149)(84,150)(85,151)(86,152)(87,153)(88,154)(89,155)(90,156)(91,157)(92,158)(93,159)(94,160)(189,365)(190,366)(191,367)(192,368)(193,369)(194,370)(195,371)(196,372)(197,373)(198,374)(199,375)(200,376)(201,283)(202,284)(203,285)(204,286)(205,287)(206,288)(207,289)(208,290)(209,291)(210,292)(211,293)(212,294)(213,295)(214,296)(215,297)(216,298)(217,299)(218,300)(219,301)(220,302)(221,303)(222,304)(223,305)(224,306)(225,307)(226,308)(227,309)(228,310)(229,311)(230,312)(231,313)(232,314)(233,315)(234,316)(235,317)(236,318)(237,319)(238,320)(239,321)(240,322)(241,323)(242,324)(243,325)(244,326)(245,327)(246,328)(247,329)(248,330)(249,331)(250,332)(251,333)(252,334)(253,335)(254,336)(255,337)(256,338)(257,339)(258,340)(259,341)(260,342)(261,343)(262,344)(263,345)(264,346)(265,347)(266,348)(267,349)(268,350)(269,351)(270,352)(271,353)(272,354)(273,355)(274,356)(275,357)(276,358)(277,359)(278,360)(279,361)(280,362)(281,363)(282,364), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94)(95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188)(189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282)(283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376)>;
G:=Group( (1,256)(2,257)(3,258)(4,259)(5,260)(6,261)(7,262)(8,263)(9,264)(10,265)(11,266)(12,267)(13,268)(14,269)(15,270)(16,271)(17,272)(18,273)(19,274)(20,275)(21,276)(22,277)(23,278)(24,279)(25,280)(26,281)(27,282)(28,189)(29,190)(30,191)(31,192)(32,193)(33,194)(34,195)(35,196)(36,197)(37,198)(38,199)(39,200)(40,201)(41,202)(42,203)(43,204)(44,205)(45,206)(46,207)(47,208)(48,209)(49,210)(50,211)(51,212)(52,213)(53,214)(54,215)(55,216)(56,217)(57,218)(58,219)(59,220)(60,221)(61,222)(62,223)(63,224)(64,225)(65,226)(66,227)(67,228)(68,229)(69,230)(70,231)(71,232)(72,233)(73,234)(74,235)(75,236)(76,237)(77,238)(78,239)(79,240)(80,241)(81,242)(82,243)(83,244)(84,245)(85,246)(86,247)(87,248)(88,249)(89,250)(90,251)(91,252)(92,253)(93,254)(94,255)(95,366)(96,367)(97,368)(98,369)(99,370)(100,371)(101,372)(102,373)(103,374)(104,375)(105,376)(106,283)(107,284)(108,285)(109,286)(110,287)(111,288)(112,289)(113,290)(114,291)(115,292)(116,293)(117,294)(118,295)(119,296)(120,297)(121,298)(122,299)(123,300)(124,301)(125,302)(126,303)(127,304)(128,305)(129,306)(130,307)(131,308)(132,309)(133,310)(134,311)(135,312)(136,313)(137,314)(138,315)(139,316)(140,317)(141,318)(142,319)(143,320)(144,321)(145,322)(146,323)(147,324)(148,325)(149,326)(150,327)(151,328)(152,329)(153,330)(154,331)(155,332)(156,333)(157,334)(158,335)(159,336)(160,337)(161,338)(162,339)(163,340)(164,341)(165,342)(166,343)(167,344)(168,345)(169,346)(170,347)(171,348)(172,349)(173,350)(174,351)(175,352)(176,353)(177,354)(178,355)(179,356)(180,357)(181,358)(182,359)(183,360)(184,361)(185,362)(186,363)(187,364)(188,365), (1,161)(2,162)(3,163)(4,164)(5,165)(6,166)(7,167)(8,168)(9,169)(10,170)(11,171)(12,172)(13,173)(14,174)(15,175)(16,176)(17,177)(18,178)(19,179)(20,180)(21,181)(22,182)(23,183)(24,184)(25,185)(26,186)(27,187)(28,188)(29,95)(30,96)(31,97)(32,98)(33,99)(34,100)(35,101)(36,102)(37,103)(38,104)(39,105)(40,106)(41,107)(42,108)(43,109)(44,110)(45,111)(46,112)(47,113)(48,114)(49,115)(50,116)(51,117)(52,118)(53,119)(54,120)(55,121)(56,122)(57,123)(58,124)(59,125)(60,126)(61,127)(62,128)(63,129)(64,130)(65,131)(66,132)(67,133)(68,134)(69,135)(70,136)(71,137)(72,138)(73,139)(74,140)(75,141)(76,142)(77,143)(78,144)(79,145)(80,146)(81,147)(82,148)(83,149)(84,150)(85,151)(86,152)(87,153)(88,154)(89,155)(90,156)(91,157)(92,158)(93,159)(94,160)(189,365)(190,366)(191,367)(192,368)(193,369)(194,370)(195,371)(196,372)(197,373)(198,374)(199,375)(200,376)(201,283)(202,284)(203,285)(204,286)(205,287)(206,288)(207,289)(208,290)(209,291)(210,292)(211,293)(212,294)(213,295)(214,296)(215,297)(216,298)(217,299)(218,300)(219,301)(220,302)(221,303)(222,304)(223,305)(224,306)(225,307)(226,308)(227,309)(228,310)(229,311)(230,312)(231,313)(232,314)(233,315)(234,316)(235,317)(236,318)(237,319)(238,320)(239,321)(240,322)(241,323)(242,324)(243,325)(244,326)(245,327)(246,328)(247,329)(248,330)(249,331)(250,332)(251,333)(252,334)(253,335)(254,336)(255,337)(256,338)(257,339)(258,340)(259,341)(260,342)(261,343)(262,344)(263,345)(264,346)(265,347)(266,348)(267,349)(268,350)(269,351)(270,352)(271,353)(272,354)(273,355)(274,356)(275,357)(276,358)(277,359)(278,360)(279,361)(280,362)(281,363)(282,364), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94)(95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188)(189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282)(283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376) );
G=PermutationGroup([[(1,256),(2,257),(3,258),(4,259),(5,260),(6,261),(7,262),(8,263),(9,264),(10,265),(11,266),(12,267),(13,268),(14,269),(15,270),(16,271),(17,272),(18,273),(19,274),(20,275),(21,276),(22,277),(23,278),(24,279),(25,280),(26,281),(27,282),(28,189),(29,190),(30,191),(31,192),(32,193),(33,194),(34,195),(35,196),(36,197),(37,198),(38,199),(39,200),(40,201),(41,202),(42,203),(43,204),(44,205),(45,206),(46,207),(47,208),(48,209),(49,210),(50,211),(51,212),(52,213),(53,214),(54,215),(55,216),(56,217),(57,218),(58,219),(59,220),(60,221),(61,222),(62,223),(63,224),(64,225),(65,226),(66,227),(67,228),(68,229),(69,230),(70,231),(71,232),(72,233),(73,234),(74,235),(75,236),(76,237),(77,238),(78,239),(79,240),(80,241),(81,242),(82,243),(83,244),(84,245),(85,246),(86,247),(87,248),(88,249),(89,250),(90,251),(91,252),(92,253),(93,254),(94,255),(95,366),(96,367),(97,368),(98,369),(99,370),(100,371),(101,372),(102,373),(103,374),(104,375),(105,376),(106,283),(107,284),(108,285),(109,286),(110,287),(111,288),(112,289),(113,290),(114,291),(115,292),(116,293),(117,294),(118,295),(119,296),(120,297),(121,298),(122,299),(123,300),(124,301),(125,302),(126,303),(127,304),(128,305),(129,306),(130,307),(131,308),(132,309),(133,310),(134,311),(135,312),(136,313),(137,314),(138,315),(139,316),(140,317),(141,318),(142,319),(143,320),(144,321),(145,322),(146,323),(147,324),(148,325),(149,326),(150,327),(151,328),(152,329),(153,330),(154,331),(155,332),(156,333),(157,334),(158,335),(159,336),(160,337),(161,338),(162,339),(163,340),(164,341),(165,342),(166,343),(167,344),(168,345),(169,346),(170,347),(171,348),(172,349),(173,350),(174,351),(175,352),(176,353),(177,354),(178,355),(179,356),(180,357),(181,358),(182,359),(183,360),(184,361),(185,362),(186,363),(187,364),(188,365)], [(1,161),(2,162),(3,163),(4,164),(5,165),(6,166),(7,167),(8,168),(9,169),(10,170),(11,171),(12,172),(13,173),(14,174),(15,175),(16,176),(17,177),(18,178),(19,179),(20,180),(21,181),(22,182),(23,183),(24,184),(25,185),(26,186),(27,187),(28,188),(29,95),(30,96),(31,97),(32,98),(33,99),(34,100),(35,101),(36,102),(37,103),(38,104),(39,105),(40,106),(41,107),(42,108),(43,109),(44,110),(45,111),(46,112),(47,113),(48,114),(49,115),(50,116),(51,117),(52,118),(53,119),(54,120),(55,121),(56,122),(57,123),(58,124),(59,125),(60,126),(61,127),(62,128),(63,129),(64,130),(65,131),(66,132),(67,133),(68,134),(69,135),(70,136),(71,137),(72,138),(73,139),(74,140),(75,141),(76,142),(77,143),(78,144),(79,145),(80,146),(81,147),(82,148),(83,149),(84,150),(85,151),(86,152),(87,153),(88,154),(89,155),(90,156),(91,157),(92,158),(93,159),(94,160),(189,365),(190,366),(191,367),(192,368),(193,369),(194,370),(195,371),(196,372),(197,373),(198,374),(199,375),(200,376),(201,283),(202,284),(203,285),(204,286),(205,287),(206,288),(207,289),(208,290),(209,291),(210,292),(211,293),(212,294),(213,295),(214,296),(215,297),(216,298),(217,299),(218,300),(219,301),(220,302),(221,303),(222,304),(223,305),(224,306),(225,307),(226,308),(227,309),(228,310),(229,311),(230,312),(231,313),(232,314),(233,315),(234,316),(235,317),(236,318),(237,319),(238,320),(239,321),(240,322),(241,323),(242,324),(243,325),(244,326),(245,327),(246,328),(247,329),(248,330),(249,331),(250,332),(251,333),(252,334),(253,335),(254,336),(255,337),(256,338),(257,339),(258,340),(259,341),(260,342),(261,343),(262,344),(263,345),(264,346),(265,347),(266,348),(267,349),(268,350),(269,351),(270,352),(271,353),(272,354),(273,355),(274,356),(275,357),(276,358),(277,359),(278,360),(279,361),(280,362),(281,363),(282,364)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94),(95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188),(189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282),(283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376)]])
376 conjugacy classes
class | 1 | 2A | ··· | 2G | 47A | ··· | 47AT | 94A | ··· | 94LJ |
order | 1 | 2 | ··· | 2 | 47 | ··· | 47 | 94 | ··· | 94 |
size | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
376 irreducible representations
dim | 1 | 1 | 1 | 1 |
type | + | + | ||
image | C1 | C2 | C47 | C94 |
kernel | C22×C94 | C2×C94 | C23 | C22 |
# reps | 1 | 7 | 46 | 322 |
Matrix representation of C22×C94 ►in GL3(𝔽283) generated by
1 | 0 | 0 |
0 | 282 | 0 |
0 | 0 | 1 |
282 | 0 | 0 |
0 | 282 | 0 |
0 | 0 | 1 |
141 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 254 |
G:=sub<GL(3,GF(283))| [1,0,0,0,282,0,0,0,1],[282,0,0,0,282,0,0,0,1],[141,0,0,0,1,0,0,0,254] >;
C22×C94 in GAP, Magma, Sage, TeX
C_2^2\times C_{94}
% in TeX
G:=Group("C2^2xC94");
// GroupNames label
G:=SmallGroup(376,12);
// by ID
G=gap.SmallGroup(376,12);
# by ID
G:=PCGroup([4,-2,-2,-2,-47]);
// Polycyclic
G:=Group<a,b,c|a^2=b^2=c^94=1,a*b=b*a,a*c=c*a,b*c=c*b>;
// generators/relations
Export